减少的牵引力限制了移动机器人系统抵抗或施加大型外部负载的能力,例如拉紧有效载荷。一种简单且通用的解决方案是将束缚在天然发生的物体周围,以利用卡普斯坦效应并呈指数放大的固定力。实验表明,理想化的Capstan模型解释了对常见不规则室外物体(树木,岩石,柱子)经历的力放大。适用于可变环境条件,这种指数放大方法可以串联或与机器人团队并行利用单个或多个capstan对象。这种适应性允许一系列潜在配置,对于当对象无法完全包围或抓住时,特别有用。这些原则已通过移动平台证明(1)控制有效载荷的降低和逮捕,(2)以实现有效载荷的平面控制,以及(3)充当更大范围平台的锚点。我们显示了一个简单的系绳,包裹在沙子上的浅石头上,放大了低牵引力平台的持有力量,最多可达774倍。
translated by 谷歌翻译
通用数据模型解决了标准化电子健康记录(EHR)数据的许多挑战,但无法将其集成深度表型所需的资源。开放的生物学和生物医学本体论(OBO)铸造本体论提供了可用于生物学知识的语义计算表示,并能够整合多种生物医学数据。但是,将EHR数据映射到OBO Foundry本体论需要大量的手动策展和域专业知识。我们介绍了一个框架,用于将观察性医学成果合作伙伴关系(OMOP)标准词汇介绍给OBO铸造本体。使用此框架,我们制作了92,367条条件,8,615种药物成分和10,673个测量结果的映射。域专家验证了映射准确性,并且在24家医院进行检查时,映射覆盖了99%的条件和药物成分和68%的测量结果。最后,我们证明OMOP2OBO映射可以帮助系统地识别可能受益于基因检测的未诊断罕见病患者。
translated by 谷歌翻译
{g} {ustav} Fechner 1860年的心理物理学描述,即对其刺激的感觉的测量,被广泛认为是现代心理科学的出现。在心理物理学中,研究人员的参数会改变刺激的某些方面,并衡量人类受试者对该刺激的经历的变化;这样做可以深入了解感觉与唤起它的物理输入之间的关系。这种方法在感知域中大量使用,包括信号检测,阈值测量和理想的观察者分析。像视觉科学这样的科学领域始终依靠心理物理学的方法和程序,但是现在,机器学习研究人员对它们的越来越多,通过在生物学和人工感知之间扩大重叠\ cite \ cite {rojas2011automation {scheireratom,scheirer2014Perceptial2014Perceptual,Escalera2014ChaleAr2014Chalearearearearearnnag,Zhangy2018Agic, grieggs2021measuring}。由行为测量所指导的机器感知,而不是仅限于任意分配人类标签的指导,具有为人工智能进一步进步的巨大潜力。
translated by 谷歌翻译
尽管电子健康记录是生物医学研究的丰富数据来源,但这些系统并未在医疗环境中统一地实施,并且由于医疗保健碎片化和孤立的电子健康记录之间缺乏互操作性,可能缺少大量数据。考虑到缺少数据的案例的删除可能会在随后的分析中引起严重的偏见,因此,一些作者更喜欢采用多重插补策略来恢复缺失的信息。不幸的是,尽管几项文献作品已经通过使用现在可以自由研究的任何不同的多个归档算法记录了有希望的结果,但尚无共识,MI算法效果最好。除了选择MI策略之外,归纳算法及其应用程序设置的选择也至关重要且具有挑战性。在本文中,受鲁宾和范布伦的开创性作品的启发,我们提出了一个方法学框架,可以应用于评估和比较多种多个插补技术,旨在选择用于计算临床研究工作中最有效的推断。我们的框架已被应用于验证和扩展较大的队列,这是我们在先前的文献研究中提出的结果,我们在其中评估了关键患者的描述符和Covid-19的影响在2型糖尿病患者中的影响,其数据为2型糖尿病,其数据为2型糖尿病由国家共同队列合作飞地提供。
translated by 谷歌翻译
贝叶斯工作流程通常需要引入滋扰参数,但对于核心科学建模,需要访问边缘后部密度。在这项工作中,我们使用掩盖的自回归流量和内核密度估计器封装边缘后部,使我们能够计算边际kullback-leibler脱离器和边缘贝叶斯模型尺寸,此外还可以生成样品和计算边际对数概率。我们将其应用于暗能量调查的局部宇宙学示例和全局21cm信号实验。除了计算边缘贝叶斯统计数据外,这项工作对于在贝叶斯实验设计,复杂的先验建模和似然仿真中进一步应用也很重要。该技术可在PIP可容纳的代码人造黄油中公开获得。
translated by 谷歌翻译
有效的空间交通管理需要积极识别人造卫星。从观察到的数据中提取对象识别的当前方法需要空间分辨的图像,其限制对低地球轨道中的对象的标识。然而,大多数人造卫星在地球静止轨道上运行在距离的距离中,禁止基于地面的观察者解析空间信息。本文演示了一种物体识别解决方案,利用修改的残余卷积神经网络将远程不变光谱数据映射到对象标识。我们报告了模拟64级卫星问题超过80%的分类精度 - 即使在卫星正在进行恒定,随机重新定位的情况下。由这些结果驱动的天文观察活动,九级问题的精度为72%,平均每类的100个示例,按照模拟预期执行。我们展示了通过辍学,随机重量平均(SWA)和SWA集中的分层贝叶斯推断的应用,以测量空间交通管理中的分类不确定性 - 临界部件,其中日常决策昂贵的空间资产并承担地缘政治后果。
translated by 谷歌翻译
深度学习(DL)模型为各种医学成像基准挑战提供了最先进的性能,包括脑肿瘤细分(BRATS)挑战。然而,局灶性病理多隔室分割(例如,肿瘤和病变子区)的任务特别具有挑战性,并且潜在的错误阻碍DL模型转化为临床工作流程。量化不确定形式的DL模型预测的可靠性,可以实现最不确定的地区的临床审查,从而建立信任并铺平临床翻译。最近,已经引入了许多不确定性估计方法,用于DL医学图像分割任务。开发指标评估和比较不确定性措施的表现将有助于最终用户制定更明智的决策。在本研究中,我们探索并评估在Brats 2019-2020任务期间开发的公制,以对不确定量化量化(Qu-Brats),并旨在评估和排列脑肿瘤多隔室分割的不确定性估计。该公制(1)奖励不确定性估计,对正确断言产生高置信度,以及在不正确的断言处分配低置信水平的估计数,(2)惩罚导致更高百分比的无关正确断言百分比的不确定性措施。我们进一步基准测试由14个独立参与的Qu-Brats 2020的分割不确定性,所有这些都参与了主要的Brats细分任务。总体而言,我们的研究结果证实了不确定性估计提供了分割算法的重要性和互补价值,因此突出了医学图像分析中不确定性量化的需求。我们的评估代码在HTTPS://github.com/ragmeh11/qu-brats公开提供。
translated by 谷歌翻译
人工智能一直在全球转变产业和学术研究,研究软件开发也不例外。在研究软件开发生命周期的各个方面都应用了机器学习和深度学习,从新算法设计范例到软件开发过程。在本文中,我们讨论了我们对当今挑战和机会的看法,即AI在研究软件开发和工程师中展示了我们在佛罗里达大学的方法,正在为AI的新时代做好准备我们的劳动力。
translated by 谷歌翻译
图表学习方法为解决图形所代表的复杂的现实世界问题打开了新的可能性。但是,这些应用程序中使用的许多图包括数百万节点和数十亿个边缘,并且超出了当前方法和软件实现的功能。我们提供葡萄,这是一种用于图形处理和表示学习的软件资源,能够通过使用专业和智能数据结构,算法和快速并行实现来通过大图扩展。与最先进的软件资源相比,葡萄显示出经验空间和时间复杂性的数量级的改善,以及边缘预测和节点标签预测性能的实质和统计学上的显着改善。此外,葡萄提供了来自文献和其他来源的80,000多种图,标准化界面允许直接整合第三方库,61个节点嵌入方法,25个推理模型和3个模块化管道,以允许公平且可重复的方法比较以及用于图形处理和嵌入的库。
translated by 谷歌翻译
识别分布内容对于成功实施神经网络至关重要。已经开发了看门狗技术来支持这些输入的检测,但是性能可以受到可用数据量的限制。生成的对抗网络已经显示出许多功能,包括能够以极好的精度生成传真。本文介绍并经验评估了使用GAN生成的数据开发的多层看门狗,以改善分布外检测。Cascade看门狗使用对抗训练来增加与更难检测到的分布元素相似的可用数据量。然后,按顺序添加专门的第二个防护局。结果表明,检测最具挑战性的分布输入,同时保留了极低的假阳性率。
translated by 谷歌翻译